

POLITECHNIKA WARSZAWSKA

Building materials

Laboratory excercises

Technical properties of bituminous binders and bituminous hydroinsulating materials

Autor: dr inż. Tomasz Piotrowski mgr inż. Maciej Kalinowski

Table of content

1.	Th	ne aim	of the laboratory	3							
2.	Ba	sic inf	ormation	3							
	2.1.	Defi	nitions	3							
	2.2.	Intro	oduction	4							
3.	Tests	s to per	rform	5							
	3.1.	Test	s of technical properties of bitumen	5							
	3.1	1.1.	Penetration test	5							
	3.1	1.2.	Ring and ball (R&B) softening point test (PN-EN 1427:2001)	5							
	3.1	1.3.	Ductility test (PN-EN 13587:2005 (U))	6							
	3.1	1.4.	Flexibility in low temperature test (PN-EN 12593:2004)	7							
	3.2.	Tecł	nnical properties of bituminous membranes (PN-90/B-04615)	7							
	3.2	2.1.	Membrance apperance	7							
	3.2	2.2.	Size	8							
	3.2	2.3.	Flexibility test	8							
	3.2	2.4.	Permeability test	8							
	3.2	2.5.	Heat resistance test	9							
	3.2	2.6.	Tensile strength test	10							
	3.2	2.7.	Elongation at break point test	10							
4.	Su	ımmar	y of test results	11							
5.	Re	eport		13							
6.	Ap	opendi	xes	13							
	6.1.	Techni	ical properties of road bitumious binders and industrial bitumious binders (PS)	13							
	6.2.	Techni	ical properties of bituminous membranes	15							
7.	Re	Recommended supplementary literature18									

1. The aim of the laboratory

The aim of the exercise is to test selected technical properties of bituminous binders and hydroinsulating materials according to the procedures described in this manual.

2. Basic information

2.1.Definitions

Product for anti-moisture insulation – a flexible product manufactured from asphalt or its composition, intended for use on or under floors or tiles in contact with the ground or in walls in order to protect against water not exerting hydrostatic pressure;

Product for waterproof insulation – a flexible product manufactured from asphalt or its composition, intended for use in wall constructions or on or under floors or tiles in order to protect against water which exerts hydrostatic pressure, passing from the ground to the internal environment or from one parts of a structure to another;

Underlayment – material introduced into a product or on a waterproofing product in order to ensure its stability and/or mechanical resistance;

Cover layer – material applied to a factory-made waterproofing product, without a permanent mechanical function;

Surface finishing – materials applied to the surfaces of waterproofing products, either as a permanent protection of the upper surface against weather conditions, or as an anti-adhesive spacer on one surface or on both surfaces of waterproofing products;

Manufacturer's limit value (MLV) – value established by the manufacturer which should be obtained during tests. The manufacturer's limit value can be a minimum or maximum value as defined for product properties;

Manufacturer's declared value (MDV) – the value declared by the manufacturer together with the declared tolerance;

Matrix asphalt product – a factory-made flexible layer of asphalt with one or more internal or external matrices incorporated, supplied in a rolled, ready-to-use form;

2.2. Introduction

The laboratory should be carried out according to the schedule given below:

PART I – BITUMEN

- 1. Using the standards and materials enclosed, get acquainted with the types and grades of bituminous binders and the requirements for the determination of properties considered for their assessment.
- 2. Using the standards and descriptions of tests included in Appendix No.2, find the ways (methods) of performing determination (measurements) of the following properties of bitumen: penetration, softening point, ductility, flexibility in low temperature.
- 3. Make the determination of penetration and softening point of the bitumen indicated by the tutor.
- 4. On the basis of results obtained in particular determinations, identify the bitumen tested (grade and possibly additional classifying notations) together with the assessment of these results according to standard requirements.

PART II – BITUMINOUS MEMBRANES

- 1. Using the standards and materials enclosed, get acquainted with the types and grades of bituminous membranes and the requirements for the determination of technical properties considered for their assessment.
- 2. On the basis of standards, find the ways (methods) of performing determination (measurements) of the following properties of bituminous membranes: flexibility, thermal resistance, permeability, rupture force (tearing force), elongation at rupture.
- 3. Make the determination of flexibility and heat resistance, determine the quantity of rupture force and elongation at rupture for the bituminous membranes indicated by the tutor.
- 4. On the grounds of results obtained in particular determinations, assess their compliance with standard requirements.

3. Tests to perform

3.1. Tests of technical properties of bitumen

3.1.1. Penetration test

The penetration depth of a 1 mm diameter needle plunged by 5 sec into the tested bitumen sample under 100 g load, at 25° C is measured. The penetration unit (pen) is an abstract number corresponding to 0.1 mm immersion of the penetration needle. The penetrometer (Fig.1) is used to measure the value of penetration. The result is based on the arithmetic mean of not less than 3 measurements with an accuracy of the integer.

Figure 1. Penetrometer: 1: needle; 2 - plate/disk with 0-360 Pen scale; 3 - pneedle release button.

3.1.2. Ring and ball (R&B) softening point test (PN-EN 1427:2001)

It consists in heating the tested bitumen sample to a temperature that makes the softening bitumen move under the load of a steel ball and touch the apparatus bottom (Fig. 2). This temperature is acknowledged to be the softening point. The determination is made by filling the rings with the bitumen tested and placing standard steel balls on it and putting it into the vessel filled with water. Then the whole set is heated so that the speed of temperature increase is c. 5°C/min. The result is based on the arithmetic mean of at least 2 tests.

Wydział

Figure 2. Ring-and-ball apparatus: 1-ring filled with bitumen, 2-glass beaker, 3-steel balls (dimensions in mm).

3.1.3. Ductility test (PN-EN 13587:2005 (U))

It consists in defining the maximum length, in cm, to which a sample may be stretched in ductilometer (Fig. 3) without rupture/breaking. A number-eight shaped bitumen sample (Fig.4) is stretched in water (in ductilometer) at the temperature of 25° C and at 5cm/min speed. The bath viscosity should be equal to the viscosity of bitumen. If the bitumen tested is more viscous than water, then sodium chloride or glycerine should be added to the ductilometer water. If bitumen viscosity is lower, then add ethanol to the water. When observing the bitumen sample, the location of ductilometer pointer at the moment of bitumen rupture should be noted. The result is the arithmetic mean of at least 3 tests.

Figure 3. Ductilometer.

Figure 4. Bitumen sample prepared for bitumen ductility test (dimensions in mm).

3.1.4. Flexibility in low temperature test (PN-EN 12593:2004)

It consists in cooling a steel plate with a layer of bitumen tested in the Frass apparatus (Fig.5) and conducting a bending test. The initial temperature is of 10°C higher than brittle point. Then the temperature is reduced and the steel plate bent until reaching the temperature at which a first crack or fracture of the bitumen tested is visible. The result is based on the arithmetic mean of 3 tests at least. The results should be given with an accuracy of 1°C.

Figure 5. Frass apparatus (dimensions in mm).

3.2. Technical properties of bituminous membranes (PN-90/B-04615)

3.2.1. Membrance apperance

It is conducted by unrolling the bituminous membrane, checking the equality and condition of edges of the ribbon as well as uniformity of surface, with special consideration given to mechanical damage. Other elements to be checked:

- in case of isolation membranes weatherproofing mass should not occur in excess to avoid membrane sticking in a roll.
- in case of both sides coated membranes mineral shake-on should be evenly distributed.
- in membranes with metal or plastic foil a foil making an outer layer should be precisely glued to the matrix covered with bitumen mass/mix, and the bitumen mass/mix on the underside of the foil should adhere well and be evenly distributed.

3.2.2. Size

It consists in measuring the width and length of membrane ribbon. The width should be taken with an accuracy of 1cm, the length -5 cm.

3.2.3. Flexibility test

Test should be done on blocks (e.g. metal blocks of size given in Fig.1) or on a rod of equivalent diameter. Test temperature and block diameters - according to subject standards. Four pieces of unit samples intended for flexibility testing (for each temperature included in the subject standard) should be stored together with blocks or rods of diameters given, in the following way:

- in water of 20°C over 10 ± 15 minutes.
- in water of 4°C over c. 30 minutes.
- in iced water of 0°C over c. 30 minutes.

Figure 6. Master model for bituminous membrane flexibility testing (size in mm).

Measurement time from the moment of taking the samples out of water should not be longer than 15 s. After taking a sample out, it should be bent once around a rod or block through an arc of 180° and outer surface should be observed with the naked eye. If we test a bituminous membrane with outer foil covering, the sample underside should be watched. Test result is considered positive if at least three samples tested do not show any cracks or fractures.

3.2.4. Permeability test

It is conducted in an apparatus shown in Fig.2. A $6\div8$ thick ring (2) of 165 mm outer diameter is tightly fixed to a $500\div2000$ mm long pipe (1) of 52.5 mm inner diameter. The bottom surface of the ring is smoothly machined. C. 80 mm above the ring there is a curved (L-shaped) pipe (3) of $5\div10$ mm diameter, with a tightly placed calibrated glass pipe (5) inside. The calibrated pipe is used to measure the fluid level in pipe (1). A ring (6) of outer and inner diameters equal to the upper ring diameters is fixed with 3 screws (8) to ring (2). The upper surface of the bottom

ring should be smoothly machined. Two 3÷5mm thick rubber gaskets (7) of inner diameter c. 35 mm are put between the two rings.

Figure 2. Apparatus for permeability test.

Three legs making the apparatus base are attached to the bottom ring. Testing should be performed in the following way: Three unit samples are placed separately between the rubber gaskets. Before fixing the gaskets, a circle of filter paper is placed on the bottom of the sample so that it adheres closely to the membrane. On putting the sample with the gaskets into the apparatus, the sample is clamped with 3 screws - tightly but carefully, not to cause damage. Water is carefully poured into the pipe, up to a depth defined in the relevant subject standard. After a standard-defined period of time, it should be observed if the bituminous membrane shows any sign of leaks, seen as spots on the filter paper. The result is considered positive if all samples tested meet the requirements.

3.2.5. Heat resistance test

Testing is done on six unit samples (three of lengthwise direction and three of crosswise direction), which should be loosely suspended in the direction of a longer edge in a dryer heated to a constant temperature given in the subject standard. After 2 hours, the samples should be removed from the dryer, cooled and possible changes in their appearance should be described

(curtaining of coat, blisters, shoulders, etc.). If five out of six samples tested do not show any negative changes defined in the subject standard, the test result should be considered positive.

3.2.6. Tensile strength test

Ten unit samples (five of lengthwise direction and five of crosswise direction) are exposed to four-hour air conditioning at the temperature of 20°C. When testing insulation bituminous membranes, relative humidity during the air conditioning should be app. 65%. When placing the samples at the tensile testing machine, a strip of bituminous membrane must be fixed between jaw chucks to keep a 200-mm distance between the jaws. The load of tested sample at rupture should rise at a uniform rate; tension speed should be 40 mm/min. If the sample is broken at a distance of less than or equal to 2 cm from the clamp, another measurement on a new sample is recommended. The tensile strength value should be calculated in kN, as the arithmetic mean separately for lengthwise and crosswise direction samples.

3.2.7. Elongation at break point test

It should be conducted during the check of breaking load at the moment of rupture or tear of the strip (dynamometer indicator withdrawal) when the increment of ΔL sample length is read. Unit elongation ε is calculated, separately as the arithmetic mean for lengthwise and crosswise direction of sample, according to the formula:

$$\varepsilon = \frac{\Delta L}{L} \cdot 100 \ [\%]$$

where ΔL - increment of length at the moment of rupture or tear of the strip [mm], L - primary sample length between the machine clamps [mm].

4. Summary of test results

Table 1. Results obtained in bitumen properties tests::

(type, variety of bitumen)

No	Property		Test result	Requirements acc. to standard
1	Penetration at 25°C, 1	/10 mm		
2	Softening point by R&	&В, °С		
3 *)	Brittleness temperatur	re, °C		
4 *)	Ductility	at 25 °C, cm		
		at 15 °C, cm		
Conc	elusions:			
*) de	termination result is gi	ven by the tuto	r	

Table 2. Results obtained in bituminous membranes properties tests:

(type, variety of bituminous membrane)

No	Property		Test result	Requirements acc. to
				standard
1	Flexibility	at $20 \pm 2^{\circ}C$		
		at $0 \pm 2^{\circ}C$		
2	Heat resistanc	the at $70 \pm 2^{\circ}$ C		
3	Permeability	Water test over 72 h		
		Water test over 100		
		h		
4	Tensile streng	th, N		
5	Elongation at	brake, %		
Cone	clusions:			

5. Report

The report should include the following points:

- I. Subject of research (basic information about the tested materials)
- II. Research results

(the results of tests performer during laboratory class, presented in a manner indicated in the 'summary of results' section)

III. Conclusions

(list of findings formulated on the basis of the conducted research)

IV. Literature

(list of references used to prepare the report)

6. Appendixes

6.1. Technical properties of road bitumious binders and industrial bitumious binders (PS)

Table 1. Technical properties of road bituminous binders acc. to PN-EN 12591:2002.

Property	Unit	Type of bitumen											
		20/30	35/50	50/70	70/100	100/150	160/220	250/330					
Penetration at 25°C	Penetration degree (0,1 mm)	20-30	35-50	50-70	70-100	100-150	160-220	250-330					
Softening temperature	°C	55-63	50-58	46-54	43-51	39-47	35-43	30-38					
Combustion temperature	Not lower than, °C	240	240	230	230	230	220	220					
Brittleness temperature,	Not higher than, °C	-	-5	-8	-10	-12	-15	-16					
Dynamic viscosity at 60°C,	Not less than, Pa · s	440	225	145	90	55	30	18					

Ductility test – only for polymer-modified bitumen.

Property	Unit	Type of bitumen										
		40/175*)	75/30	85/25	85/40	105/15						
Penetration at 25°C	Penetration degree (0,1 mm)	120÷200	10÷35	20÷30	35÷45	10÷25						
Softening temperature	°C	38÷47	70÷80	80÷90	80÷90	100÷110						
Ductility at	Not less											
25°C	than, cm	25	4	3	3	2						
Brittleness temperature	Not more than, °C	-12	-12	-20	-20	-7						
Dynamic viscosity at 60°C,	Not less than, $Pa \cdot s$	18	30	55	90	145						

Table 2. Technical properties of industrial bituminous binders (PS).

*) the numerator of bitumen determination, e.g. 40/175, indicates the arithmetic mean of softening point in Celsius degrees – 40° C, while the denominator – the mean value of penetration in penetration degrees - 175.

6.2. Technical properties of bituminous membranes

					Glass	fleece						Pol	yester 'n	on-
Property		Unde	er layer		Top layer							woven under-layer		
	64/ 1200	100/ 1200	100/ 1400	100/ 1600	64/ 1200	64/ 2000	100/ 1200	100/ 1400	100/ 1600	100/ 2000	100/ 1600	P/ 1600	P/ 2000	P/ 2400
Tensile strength of a 50 mm strip, not less than [N]	200 280				200	320		280		320	300	250		
Elongation at break, not less than [%]				2				1			20			
No cracks on the top surface of bituminous membrane while bending around a mandrel/rod of diameter [cm],														
At the temperature: 20°C			4			6		4		6	4	2	2	Ļ
0°C		6	7	8	6	10	6	7	8	10	8	5		7
No permeability over 100 hours under a column of water of height [cm]	50 - 50 - 50							50	50	50 100				
Heat resistance – no changes allowed at testing over 2 h at the temperature of [°C]					7	0							70	
Length of the roll [m]					10, 15	5 or 20						10	15	20
Width of the roll [cm]							100)						

Table 1. Technical properties of bituminous membranes

Tab.2. Te	chnical	properties	of torch-on	bituminous	membranes.
-----------	---------	------------	-------------	------------	------------

				Reinforc	ement			
Property	Double n	eedled, glass fleece	fabric and		Polye	ven'		
	PZ/2500	PZ/3000	WZ/2500	PZ/2500	PZ/3000	WZ/2500	Polier-modified bitumen	
Tensile strength, not less than [N]:			-			-		
- along		900			800		800	
- across		900			400		600	
Elongation at rupture, not less than [%]:								
- along		3			30	40		
- across		3			40	40		
Permeability - no water permeability		unde	r pressure 0.5	MPa over 1	0 min		under pressure 0.2 MPa over 24h	
Thermal resistance: no water flow			2 hours	at 70°C			2 hours at -25°C	
Flexibility – no cracks or fractures at bending			50mm,	, 20°C				
through an arc of 180° at a diameter [mm] and temperature [°C]		30mm at -25°C						
Sizes:								
- length [m]		10						
- width [cm]			10			95, 100 lub 105		

					1				Men	ıbrane	type							
			Iso	latic	n			ι	Underlayer					Top layer				
										Memb	orane v	ariety						
Property		1400/1400	1400/1600	1420/1600	P/400/1100	P/400/1200	P/400/1400	P/400/1600	P/500/1300	P/500/1500	P/500/1700	W/400/1200	W/400/1400	W/440/1600	W/550/1300	W/500/1500	W/500/1700	
	at 2 when	20±2°C, bent over									15							
ility	[mm] on per	diameter, n half- imeter]		cracks and fractures on the outer surface inadmissible														
Flexib	at (when	$0 \pm 2^{\circ}$ C, bent over	50	(50	5	50			60			50			60		
	a b [mm] oi pe	lock of diameter, 1 half- rimeter		cracks and fractures on the outer surface inadmissible														
Heat resistance			70±2°C within 2h, shoulders and curtaining inadmissible															
	under	1	100 500															
eability	[cm] height over 72 hours		500	1(000	inadmissible												
Perm	under of v	a column water of	500	10	000		500 1000 500 1000 500 100		1000	500 1000								
	[cm over] height 100 hours								ina	dmissi	ble						
Ter 50 : 1 dire	Tensile strength of 50 mm sample, the mean of both directions, not less than [N]		150	3	15	250	250 315		345			315			345			
Elongation at rupture, not less than [%]										2								
Roll	sizes	length [m]	20;	40;	60						10); 15 o	r 20					
width [cm]				90; 95; 100; 105 or 110														

Tab.3. Technical properties of bituminous membranes (on building paperboard).

7. Recommended supplementary literature

- Chojczak W., Materiały budowlane. Drewno, szkło, lepiszcza bitumiczne, tworzywa sztuczne. Ćwiczenia laboratoryjne. Część 2, OWPW, 2018
- Praca zbiorowa, Budownictwo ogólne. Tom I. Materiały i wyroby budowlane. Arkady, 2010

